SPLTV

Penyelesaian:

Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.

x + y + z = 16

x + y = z – 2

100x + 10y + z = 21(x + y + z) + 13


Atau bisa kita ubah menjadi bentuk berikut.

x + y + z = 16

x + y – z = –2

79x – 11y – 20z = 13


Sekarang kita eliminasi variabel y dengan cara berikut.

● Dari persamaan 1 dan 2

x + y + z

=

16


x + y – z

=

−2

2z

=

18

z

=

9



● Dari persamaan 1 dan 3

x + y + z

=

16

|× 11|

11x + 11y + 11z

=

176


79x – 11y – 20z

=

13

|× 1|

79x – 11y – 20z

=

13

+






90x – 9z

=

189


Subtitusikan nilai z = 9 ke persamaan 90x – 9z = 189 sehingga diperoleh:

⇒ 90x – 9z = 189

⇒ 90x – 9(9) = 189

⇒ 90x – 81 = 189

⇒ 90x = 189 + 81

⇒ 90x = 270

⇒ x = 3


Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:

⇒ x + y + z = 16

⇒ 3 + y + 9 = 16

⇒ y + 12 = 16

⇒ y = 16 – 12

⇒ y = 4

Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.


Soal Cerita 2:

Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?

Penyelesaian:

Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.

x + 3y + 2z = 33.000

2x + y + z = 23.500

x + 2y + 3z = 36.500


Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.

● Eliminasi variabel x pada persamaan 1 dan 2

x + 3y + 2z

=

33.000

|× 2|

2x + 6y + 4z

=

66.000


2x + y + z

=

23.500

|× 1|

2x + y + z

=

23.500






5y + 3z

=

42.500


● Eliminasi variabel x pada persamaan 2 dan 3

x + 3y + 2z

=

33.000


x + 2y + 3z

=

36.500

y – z

=

−3.500

y

=

z – 3.500



Subtitusikan y = z – 3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:

⇒ 5y + 3z = 42.500

⇒ 5(z – 3.500) + 3z = 42.500

⇒ 5z – 17.500 + 3z = 42.500

⇒ 8z – 17.500 = 42.500

⇒ 8z = 42.500 + 17.500

⇒ 8z = 42.500 + 17.500

⇒ 8z = 60.000

⇒ z = 7.500


Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.

⇒ y = z – 3.500

⇒ y = 7.500 – 3.500

⇒ y = 4.000


Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.

⇒ x + 3y + 2z = 33.000

⇒ x + 3(4.000) + 2(7.500) = 33.000

⇒ x + 12.000 + 15.000 = 33.000

⇒ x + 27.000 = 33.000

⇒ x = 33.000 – 27.000

⇒ x = 6.000

Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.

Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.

x + y + z = 16

x + y = z – 2

100x + 10y + z = 21(x + y + z) + 13


Atau bisa kita ubah menjadi bentuk berikut.

x + y + z = 16

x + y – z = –2

79x – 11y – 20z = 13


Sekarang kita eliminasi variabel y dengan cara berikut.

● Dari persamaan 1 dan 2

x + y + z

=

16


x + y – z

=

−2

2z

=

18

z

=

9



● Dari persamaan 1 dan 3

x + y + z

=

16

|× 11|

11x + 11y + 11z

=

176


79x – 11y – 20z

=

13

|× 1|

79x – 11y – 20z

=

13

+






90x – 9z

=

189


Subtitusikan nilai z = 9 ke persamaan 90x – 9z = 189 sehingga diperoleh:

⇒ 90x – 9z = 189

⇒ 90x – 9(9) = 189

⇒ 90x – 81 = 189

⇒ 90x = 189 + 81

⇒ 90x = 270

⇒ x = 3


Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:

⇒ x + y + z = 16

⇒ 3 + y + 9 = 16

⇒ y + 12 = 16

⇒ y = 16 – 12

⇒ y = 4

Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.


Soal Cerita 2:

Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?

Penyelesaian:

Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.

x + 3y + 2z = 33.000

2x + y + z = 23.500

x + 2y + 3z = 36.500


Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.

● Eliminasi variabel x pada persamaan 1 dan 2

x + 3y + 2z

=

33.000

|× 2|

2x + 6y + 4z

=

66.000


2x + y + z

=

23.500

|× 1|

2x + y + z

=

23.500






5y + 3z

=

42.500


● Eliminasi variabel x pada persamaan 2 dan 3

x + 3y + 2z

=

33.000


x + 2y + 3z

=

36.500

y – z

=

−3.500

y

=

z – 3.500



Subtitusikan y = z – 3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:

⇒ 5y + 3z = 42.500

⇒ 5(z – 3.500) + 3z = 42.500

⇒ 5z – 17.500 + 3z = 42.500

⇒ 8z – 17.500 = 42.500

⇒ 8z = 42.500 + 17.500

⇒ 8z = 42.500 + 17.500

⇒ 8z = 60.000

⇒ z = 7.500


Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.

⇒ y = z – 3.500

⇒ y = 7.500 – 3.500

⇒ y = 4.000


Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.

⇒ x + 3y + 2z = 33.000

⇒ x + 3(4.000) + 2(7.500) = 33.000

⇒ x + 12.000 + 15.000 = 33.000

⇒ x + 27.000 = 33.000

⇒ x = 33.000 – 27.000

⇒ x = 6.000

Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.

Postingan populer dari blog ini

FUNGSI : KUADRAT, RASIONAL DAN IRASIONAL (Muhammad Davit Abdilah)

integral fungsi aljabar