SPLTV
Penyelesaian:
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z – 2
100x + 10y + z = 21(x + y + z) + 13
Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y – z = –2
79x – 11y – 20z = 13
Sekarang kita eliminasi variabel y dengan cara berikut.
● Dari persamaan 1 dan 2
x + y + z
=
16
x + y – z
=
−2
−
2z
=
18
z
=
9
● Dari persamaan 1 dan 3
x + y + z
=
16
|× 11|
→
11x + 11y + 11z
=
176
79x – 11y – 20z
=
13
|× 1|
→
79x – 11y – 20z
=
13
+
90x – 9z
=
189
Subtitusikan nilai z = 9 ke persamaan 90x – 9z = 189 sehingga diperoleh:
⇒ 90x – 9z = 189
⇒ 90x – 9(9) = 189
⇒ 90x – 81 = 189
⇒ 90x = 189 + 81
⇒ 90x = 270
⇒ x = 3
Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
⇒ x + y + z = 16
⇒ 3 + y + 9 = 16
⇒ y + 12 = 16
⇒ y = 16 – 12
⇒ y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.
Soal Cerita 2:
Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
● Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z
=
33.000
|× 2|
→
2x + 6y + 4z
=
66.000
2x + y + z
=
23.500
|× 1|
→
2x + y + z
=
23.500
−
5y + 3z
=
42.500
● Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z
=
33.000
x + 2y + 3z
=
36.500
−
y – z
=
−3.500
y
=
z – 3.500
Subtitusikan y = z – 3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
⇒ 5y + 3z = 42.500
⇒ 5(z – 3.500) + 3z = 42.500
⇒ 5z – 17.500 + 3z = 42.500
⇒ 8z – 17.500 = 42.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 60.000
⇒ z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.
⇒ y = z – 3.500
⇒ y = 7.500 – 3.500
⇒ y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
⇒ x + 3y + 2z = 33.000
⇒ x + 3(4.000) + 2(7.500) = 33.000
⇒ x + 12.000 + 15.000 = 33.000
⇒ x + 27.000 = 33.000
⇒ x = 33.000 – 27.000
⇒ x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z – 2
100x + 10y + z = 21(x + y + z) + 13
Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y – z = –2
79x – 11y – 20z = 13
Sekarang kita eliminasi variabel y dengan cara berikut.
● Dari persamaan 1 dan 2
x + y + z
=
16
x + y – z
=
−2
−
2z
=
18
z
=
9
● Dari persamaan 1 dan 3
x + y + z
=
16
|× 11|
→
11x + 11y + 11z
=
176
79x – 11y – 20z
=
13
|× 1|
→
79x – 11y – 20z
=
13
+
90x – 9z
=
189
Subtitusikan nilai z = 9 ke persamaan 90x – 9z = 189 sehingga diperoleh:
⇒ 90x – 9z = 189
⇒ 90x – 9(9) = 189
⇒ 90x – 81 = 189
⇒ 90x = 189 + 81
⇒ 90x = 270
⇒ x = 3
Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
⇒ x + y + z = 16
⇒ 3 + y + 9 = 16
⇒ y + 12 = 16
⇒ y = 16 – 12
⇒ y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.
Soal Cerita 2:
Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
● Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z
=
33.000
|× 2|
→
2x + 6y + 4z
=
66.000
2x + y + z
=
23.500
|× 1|
→
2x + y + z
=
23.500
−
5y + 3z
=
42.500
● Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z
=
33.000
x + 2y + 3z
=
36.500
−
y – z
=
−3.500
y
=
z – 3.500
Subtitusikan y = z – 3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
⇒ 5y + 3z = 42.500
⇒ 5(z – 3.500) + 3z = 42.500
⇒ 5z – 17.500 + 3z = 42.500
⇒ 8z – 17.500 = 42.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 60.000
⇒ z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.
⇒ y = z – 3.500
⇒ y = 7.500 – 3.500
⇒ y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
⇒ x + 3y + 2z = 33.000
⇒ x + 3(4.000) + 2(7.500) = 33.000
⇒ x + 12.000 + 15.000 = 33.000
⇒ x + 27.000 = 33.000
⇒ x = 33.000 – 27.000
⇒ x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.